

LA-UR-21-20971

Approved for public release; distribution is unlimited.

Title: Subtask 3.1: Sequential Design of Experiments

Author(s): Anderson-Cook, Christine Michaela

Ng, Brenda

Intended for: Report

Issued: 2021-02-03

Subtask 3.1: Sequential Design of Experiments

Subtask Lead: Christine Anderson-Cook, LANL

Co-Lead: Brenda Ng, LLNL

January 2021

Subtask Team:

Pedro Sotorrio (LLNL), Abby Nachtsheim (LANL), Miranda Martin (LANL), Alex Dowling (Notre Dame), Jialu Wong (Notre Dame), Josh Morgan (NETL), Charles Tong (LLNL)

Why Design of Experiments in CCSI²?

- Data in Carbon Capture applications are expensive
- · Time at test facilities difficult to obtain and requires waiting

Want to make most of data that we are able to get

- Sequential Design of Experiments:
 - Allows us to be strategic about choosing what data are most beneficial
 - Tailor data collection to the specific goals of each experiment (or stage of experiment)
 - Leverage what we already know to take maximum advantage of new data
- SDoE module in FOQUS provides tools for experimenters to
 - Incorporate what is already known about a process
 - Quickly generate a designed experiment to match their objectives

EY20 Highlights

- New release of FOQUS SDoE module with new capabilities
 - Space-Filling design
 - Uniform Space-Filling (USF)
 - Non-Uniform Space-Filling (NUSF)
 - Input-Response Space-Filling (IRSF)
 - Robust Optimality-Based design

* New in EY20

- Leverages capabilities in UQ
- Builds an empirical surrogate model
- Construct design using G-, I-,

D- or A-optimality

Focus: good prediction

Focus: good estimation of model parameters

Uniform Space-Filling Designs

- Inputs:
 - Candidate set (specifies dimension of input space)
 - Previous data (optional)
 - Minimax or Maximin
 - Size(s) of designs
 - Number of random starts (time to generate design)
- Outputs
 - Multiple designs with criteria values

Previously

Non-Uniform Space-Filling Designs

- Inputs:
 - Candidate set (specifies dimension of input space)
 - Previous data (optional)
 - Size of design
 - MWR Maximum Weight Ratio (degree of non-uniformity)
 - Direct or Ranked scaling of weights
 - Number of random starts (time to generate design)
- Outputs
 - Multiple designs with criteria values

Requires column for weights with value for each row

Flexible for different objectives

Input-Response Space-Filling Designs

- Inputs:
 - Candidate set (specifies dimension of input space)
 - Previous data (optional)
 - Minimax or Maximin
 - Size of design
 - Number of random starts (time to generate design)
- **Outputs**
 - Pareto front of objectively best designs to balance spacing in input and response spaces
 - Details for each design which runs and criteria values

Requires column for

predicted response

values

Robust Optimality-Based Design of Experiments (ODoE)

- Goal: construct ideal designs based on empirically fit models
- **Basic steps:**
 - Select spreadsheet with columns of inputs and column(s) of responses
 - 2. Identify type of each input: Variable – not controllable during experiment Design – controllable during experiment
 - Specify details for each input (ranges, distribution shape, etc)
 - Specify candidate set and evaluation set (optional)
 - Fit an empirical model (different forms available) between inputs and response
 - Evaluate fit of model. When satisfied with fit, proceed.
 - 7. Use model to generate a design. Choices:
 - Optimality criterion: G-, I- (focus: prediction),
 - D-, A- (focus: parameter estimation)
 - Design size
 - **Number of Restarts**

OAK RIDGENational Laboratory

How this work fits into CCSI²

Computer Experiments

Physical Experiments – lab, pilot

Future R&D Plan and Challenges

- There are still big strategic opportunities to pursue:
 - 1. Our current tools focus on the individual experiment level, but there are powerful opportunities when we **consider the big picture**
 - CCSI² supports development of systems and models spanning basic science to deployment. This involves science sub-system models, overall system model – each with their own associated costs and utility
 - When we consider multiple different experiments to achieve strategic goals for system performance, consider
 - what types of data should we be collecting?
 - how much of each type?
 - what design within each type?
 - 2. The CCSI² approach is **model-centric**. Additional design of experiments tools can leverage knowledge from a mature mathematical / science model

Design for multi-level "conglomerate" model

Percentage CO₂ capture

Energy usage (Technoeconomic analysis)

Engineering model of pilot system

Fundamental science models

MEA System at NCCC

CO₂ mol% Solvent flow rate Gas flow rate System Inputs

Outputs / Inputs (from sub) (for System)

Thermodynamic

Inputs

Viscosity

Inputs (Temperature,

CO2 loading, MEA wt fraction)

Surface Tension

Inputs (Temperature,

CO2 loading,

MEA wt fraction) TEXAS

Overall goal:

- Best prediction throughout the input space of **NCCC** system model
- 4 "experiments" to collect data, each with different
- Costs
- Inputs / outputs
- **Utility**

Scenarios to explore:

- Different levels of maturity of model
- Different available data

New Capability: Science Model-Based Design of Experiments

Main Idea: use full model equations directly to optimizing experimental campaigns to improve parameter estimates

- + Avoids need to build/validate surrogates
- + Discriminate between alternative mechanistic models
- Requires access to equations (e.g., Pyomo)

EY 2021 Progress (Sub-Task 2.1 & 3.1)

- Created MBDOE framework that works with any Pyomo model
- Demonstrated capability in DoE case study for fixed-bed MOF characterization

EY 2022 Proposed Work (Sub-Task 3.1)

- Release framework open source as Pyomo package
- Create plan to integrate MBDOE in FOQUS
- Algorithm improvements to increase speed & robustness

30 feed f 35

Example: What is the optimal CO₂ feed composition and feed temperature for next MOF fixed bed experiment?

2.50

2.25

2.00

% 10

feed fraction [

E-optimality →

293 303 313 323 333 343 353 363 373

Feed temperature [K]

log₁₀(trace(FIM))

-7.5

log10(det(FIM))

Planned work for EY21-EY23

EY21

- Missing values / Imputation for NUSF and IRSF (LLNL)
- Videos and Documentation update for all capabilities (LANL & LLNL)
- Robust optimality-based DoE enhancement (LLNL)
- Science-based optimal design methodology development (ND)
- Design for Conglomerate model methodology development and demonstration (LANL)
- Collaboration with Pilot project teams write up case study (LANL)

EY22

- Integration of Science-based optimal design into toolset
- Integration of Design for Conglomerate model into toolset
- Collaboration with Pilot project teams write up case study
- Update supporting materials (video, documentation)
- EY23
 - Collaboration with Pilot project teams write up case study

Proposed for Breakout Discussion

Breakout Discussion

- Design for Multi-level "conglomerate" models
- Design capability for Science-based models
- Description of planned supporting materials documentation, videos
- Where do we anticipate design of experiments support being needed in the coming years?
 - Pilot studies: RTI, MTR, TDA
 - DOCCSS: PNNL CO2BOL, LBNL MOF
 - Other?
- Wishlist for other design capabilities

Open Q&A

• ??

Acknowledgements

Co-Lead: Brenda Ng, LLNL

Team:

Pedro Sotorrio (LLNL), Abby Nachtsheim (LANL), Miranda Martin (LANL), Alex Dowling (Notre Dame), Jialu Wong (Notre Dame), Josh Morgan (NETL), Charles Tong (LLNL)

For more information

https://www.acceleratecarboncapture.org/

Contact Info:

Christine Anderson-Cook, LANL candcook@lanl.gov 505-695-8850

Brenda Ng, LLNL ng30@llnl.gov

